Abstract

We propose a general multistate transition model. The model is developed for the analysis of repeated episodes of multiple states representing different health status. Transitions among multiple states are modeled jointly using multivariate latent traits with factor loadings. Different types of state transition are described by flexible transition-specific nonparametric baseline intensities. A state-specific latent trait is used to capture individual tendency of the sojourn in the state that cannot be explained by covariates and to account for correlation among repeated sojourns in the same state within an individual. Correlation among sojourns across different states within an individual is accounted for by the correlation between the different latent traits. The factor loadings for a latent trait accommodate the dependence of the transitions to different competing states from a same state. We obtain the semiparametric maximum likelihood estimates through an expectation-maximization (EM) algorithm. The method is illustrated by studying repeated transitions between independence and disability states of activities of daily living (ADL) with death as an absorbing state in a longitudinal aging study. The performance of the estimation procedure is assessed by simulation studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.