Abstract
Data synthesis is an effective statistical approach for reducing data disclosure risk. Generating fully synthetic data might minimize such risk, but its modeling and application can be difficult for data from large, complex surveys. This article extended the two-stage imputation to simultaneously impute item missing values and generate fully synthetic data. A new combining rule for making inferences using data generated in this manner was developed. Two semiparametric missing data imputation models were adapted to generate fully synthetic data for skewed continuous variable and sparse binary variable, respectively. The proposed approach was evaluated using simulated data and real longitudinal data from the Health and Retirement Study. The proposed approach was also compared with two existing synthesis approaches: (1) parametric regressions models as implemented in IVEware; and (2) nonparametric Classification and Regression Trees as implemented in synthpop package for R using real data. The results show that high data utility is maintained for a wide variety of descriptive and model-based statistics using the proposed strategy. The proposed strategy also performs better than existing methods for sophisticated analyses such as factor analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.