Abstract
Abstract. We study a binary regression model using the complementary log–log link, where the response variable Δ is the indicator of an event of interest (for example, the incidence of cancer, or the detection of a tumour) and the set of covariates can be partitioned as (X, Z) where Z (real valued) is the primary covariate and X (vector valued) denotes a set of control variables. The conditional probability of the event of interest is assumed to be monotonic in Z, for every fixed X. A finite-dimensional (regression) parameter β describes the effect of X. We show that the baseline conditional probability function (corresponding to X = 0) can be estimated by isotonic regression procedures and develop an asymptotically pivotal likelihood-ratio-based method for constructing (asymptotic) confidence sets for the regression function. We also show how likelihood-ratio-based confidence intervals for the regression parameter can be constructed using the chi-square distribution. An interesting connection to the Cox proportional hazards model under current status censoring emerges. We present simulation results to illustrate the theory and apply our results to a data set involving lung tumour incidence in mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.