Abstract

ABSTRACTSimplex regression model is often employed to analyze continuous proportion data in many studies. In this paper, we extend the assumption of a constant dispersion parameter (homogeneity) to varying dispersion parameter (heterogeneity) in Simplex regression model, and present the B-spline to approximate the smoothing unknown function within the Bayesian framework. A hybrid algorithm combining the block Gibbs sampler and the Metropolis-Hastings algorithm is presented for sampling observations from the posterior distribution. The procedures for computing model comparison criteria such as conditional predictive ordinate statistic, deviance information criterion, and averaged mean squared error are presented. Also, we develop a computationally feasible Bayesian case-deletion influence measure based on the Kullback-Leibler divergence. Several simulation studies and a real example are employed to illustrate the proposed methodologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.