Abstract

A generalized partial linear mixed model (GPLMM) is a natural extension of generalized linear mixed models (GLMMs) and partial linear models (PLMs). Almost all existing methods for analyzing GPLMMs are developed on the basis of the assumption that random effects are distributed as a fully parametric distribution such as normal distribution. In this paper, we extend the GPLMMs by specifying a Dirichlet process prior for a general distribution of random effects, and propose a semiparametric Bayesian approach by simultaneously utilizing an approximation truncation Dirichlet process prior of the random effects and a P-spline approximation of the smoothing function. By combining the block Gibbs sampler and the Metropolis–Hastings algorithm, a hybrid algorithm is presented for sampling observations from the posterior distribution. A procedure for selecting the degree of the polynomial components in nonparametric approximation using Bayes factor is given via path sampling. Some goodness-of-fit statistics are proposed to evaluate the plausibility of the posited model. Several simulation studies and a real example are presented to illustrate the proposed methodologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.