Abstract
The benchmark theory of mathematical finance is the Black–Scholes–Merton (BSM) theory, based on Brownian motion as the driving noise process for stock prices. Here the distributions of financial returns of the stocks in a portfolio are multivariate normal. Risk management based on BSM underestimates tails. Hence estimation of tail behaviour is often based on extreme value theory (EVT). Here we discuss a semi-parametric replacement for the multivariate normal involving normal variance–mean mixtures. This allows a more accurate modelling of tails, together with various degrees of tail dependence, while (unlike EVT) the whole return distribution can be modelled. We use a parametric component, incorporating the mean vector μ and covariance matrix Σ, and a non-parametric component, which we can think of as a density on [0,∞), modelling the shape (in particular the tail decay) of the distribution. We work mainly within the family of elliptically contoured distributions, focusing particularly on normal variance mixtures with self-decomposable mixing distributions. We discuss efficient methods to estimate the parametric and non-parametric components of our model and provide an algorithm for simulating from such a model. We fit our model to several financial data series. Finally, we calculate value at risk (VaR) quantities for several portfolios and compare these VaRs to those obtained from simple multivariate normal and parametric mixture models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.