Abstract
Recurrent event data from a long single realization are widely encountered in point process applications. Modeling and analyzing such data are different from those for independent and identical short sequences, and the development of statistical methods requires careful consideration of the underlying dependence structure of the long single sequence. In this paper, we propose a semiparametric additive rate model for a modulated renewal process, and develop an estimating equation approach for the model parameters. The asymptotic properties of the resulting estimators are established by applying the limit theory for stationary mixing sequences. A block-based bootstrap procedure is presented for the variance estimation. Simulation studies are conducted to assess the finite-sample performance of the proposed estimators. An application to a data set from a cardiovascular mortality study is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.