Abstract

In this paper we are interested in the derivation of the asymptotic and finite-sample distributional properties of a ldquoquasi-maximum likelihoodrdquo estimator of a ldquoscalerdquo second order parameter beta, directly based on the log-excesses of an available sample. Such estimation is of primordial importance for the adaptive selection of the optimal sample fraction to be used in the classical semi-parametric tail index estimation as well as for the reduced-bias estimation of the tail index, high quantiles and other parameters of extreme or even rare events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.