Abstract

Building a photorealistic, 3D model of an object or a complete scene from image-based methods is a fundamental problem in computer vision, and has many applications in robotic perception, navigation, exploration and mapping. In this paper, we extend current state-of-the-art in the computation of depth maps by presenting an accurate and computationally efficient iterative hierarchical algorithm for multi-view stereo. The algorithm is designed to utilise all available contextual information to compute highly-accurate and robust depth maps by iteratively examining different image resolutions in an image-pyramid. The novelty in our approach is that we are able to incrementally improve the depth fidelity as the algorithm progresses through the image pyramid by utilising a local method. This is achieved in a computationally efficient manner by simultaneously enforcing the consistency of the depth-map by continual comparison with neighbouring depth-maps. We present a detailed description of the algorithm, and describe how each step is carried out. The proposed technique is used to analyse multi-view stereo data from two well-known, standard datasets, and presented results show a significant decrease in computation time, as well as an increase in overall accuracy of the computed depth maps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.