Abstract

An optimized semi-LASER sequence that is capable of acquiring artefact-free data with an echo time (TE) of 20.1 ms on a standard clinical 3 T MR system was developed. Simulations were performed to determine the optimal TEs that minimize the expected Cramér-Rao lower bound (CRLB) as proxy for quantification accuracy of metabolites. Optimized RF pulses, crusher gradients and phase cycling were used to achieve the shortest TE in a semi-LASER sequence to date on a clinical system. Synthetic spectra were simulated using the density matrix formalism for TEs spanning from 20.1 to 220.1 ms. These simulations were used to calculate the expected CRLB for each of the 18 metabolites typically considered in 1 H MRS. High quality spectra were obtained in six healthy volunteers in the prefrontal cortex, which is known for spurious echoes due to its proximity to the paranasal sinuses, and in the parietal-occipital cortex. Spectral transients were sufficient in quality to enable phase and frequency alignment prior to summation over all repetitions. Automated high-quality water suppression was obtained for all voxels without manual adjustment. The shortest TE minimized the CRLB for all brain metabolites except glycine due to its overlap with myo-inositol at this TE. It is also demonstrated that the CRLBs increase rapidly with TE for certain coupled metabolites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.