Abstract
In this paper, we propose an efficient high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for solving linear convection-diffusion equations. The method generalizes our previous work on developing the SLDG method for transport equations [5], making it capable of handling additional diffusion and source terms. Within the DG framework, the solution is evolved along the characteristics; while the diffusion term is discretized by the local DG (LDG) method and integrated along characteristics by implicit Runge-Kutta methods together with source terms. The proposed method is named the ‘SLDG-LDG’ method and enjoys many attractive features of the DG and SL methods. These include the uniformly high order accuracy (e.g. third order) in space and in time, compact, mass conservative, and stability under large time stepping size. An L2 stability analysis is provided when the method is coupled with the first order backward Euler discretization. Effectiveness of the method are demonstrated by a group of numerical tests in one and two dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.