Abstract
AbstractIn this paper, a new formulation of material point method (MPM) to model coupled soil deformation and pore fluid flow problems is presented within the framework of the theory of porous media. The saturated porous medium is assumed to be consisting of incompressible pore fluid and deformable soil skeleton made up of incompressible solid grains. The main difference of the proposed MPM algorithm is the implicit treatment of pore‐water pressure which satisfies its incompressibility internal constraint. The resulting solid‐fluid coupled equations are solved by using a splitting algorithm based on the Chorin's projection method. The splitting algorithm helps to mitigate numerical instabilities at the incompressibility limit when equal‐order interpolation functions are used. The key strengths of the proposed semi‐implicit coupled MPM formulation is its capability to reduce pressure oscillations as well as to increase the time step size, which is independent of the fluid incremental strain level and the soil permeability. The proposed semi‐implicit MPM is validated by comparing the numerical results with the analytical solutions of several numerical tests, including 1D and 2D plane‐strain consolidation problems. To demonstrate the capability of the proposed method in simulating practical engineering problems involving large deformations, a hydraulic process leading to slope failure is studied, and the numerical result is validated by the monitored data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical and Analytical Methods in Geomechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.