Abstract

This paper proposes a novel blind image watermarking scheme exploiting Block Truncation Coding (BTC). Most of existing BTC-based watermarking or data hiding methods embed information in BTC compressed images by modifying the BTC encoding stage or BTC-compressed data, resulting in watermarked images with bad quality. Other than existing BTC-based watermarking schemes, our scheme does not really perform the BTC compression on images during the embedding process but uses the parity of BTC quantization data to guide the watermark embedding and extraction processes. In our scheme, we use a binary image as the original watermark. During the embedding process, the original cover image is first partitioned into non-overlapping 4×4 blocks. Then, BTC is performed on each block to obtain its BTC quantized high mean and low mean. According to the parity of high mean and the parity of low mean, two watermark bits are embedded in each block by modifying the pixel values in the block to make sure that the parity of high mean and the parity of low mean in the modified block are equal to the two watermark bits. During the extraction process, BTC is first performed on each block to obtain its high mean and low mean. By checking the parity of high mean and the parity of low mean, we can extract the two watermark bits in each block. The experimental results show that the proposed watermarking method is fragile to most image processing operations and various kinds of attacks while preserving the invisibility very well, thus the proposed scheme can be used for image authentication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call