Abstract

The dynamics of a rotating elastic nano-ring driven in a viscous fluid by an externally applied torque about a specific axis is studied using elasto-hydrodynamic simulations. We show that a helical deformation of the ring filament is excited, and that this leads to directed propulsion which is independent of the direction of rotation. It is found that the propulsive force and efficiency initially increase as the torque is increased, and then decrease discontinuously at a buckling transition at a critical torque. This unique propulsive behavior at the shape transition arises due to its specific geometry, i.e., circularity of an elastic filament. The implications of the behavior for artificial microscopic devices are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.