Abstract
The total Hamiltonian in general relativity, which involves the first class Hamiltonian and momentum constraints, weakly vanishes. However, when the action is expanded around a classical solution as in the case of a single scalar field inflationary model, there appears a non-vanishing Hamiltonian and additional first class constraints; but this time the theory becomes perturbative in the number of fluctuation fields. We show that one can reorganize this expansion and solve the Hamiltonian constraint exactly, which yield an explicit all order action. On the other hand, the momentum constraint can be solved perturbatively in the tensor modes γ ij by still keeping the curvature perturbation ζ dependence exact. In this way, after gauge fixing, one can obtain a semi-exact Hamiltonian for ζ which only gets corrections from the interactions with the tensor modes (hence the Hamiltonian becomes exact when the tensor perturbations set to zero). The equations of motion clearly exhibit when the evolution of ζ involves a logarithmic time dependence, which is a subtle point that has been debated in the literature. We discuss the long wavelength and late time limits, and obtain some simple but non-trivial classical solutions of the ζ zero-mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.