Abstract

The purpose of this study was to use the semiempirical quantum mechanical computational method, AM1, to investigate vinyl ether cationic homopolymerization, epoxide homopolymerization, and copolymerization of selected vinyl ethers with a model epoxide (cyclohexene oxide). Homopolymerization studies of 19 vinyl ethers showed that activation enthalpies ranged between 0.0 and 15 kcal/mol, and that the enthalpies of reaction for homopolymerization were nearly all exothermic. Homopolymerization of three epoxides predicted low activation enthalpies, some of which were virtually activationless. All ring-opening epoxide polymerizations were exothermic. Copolymerization of three vinyl ethers with cyclohexene oxide gave activation enthalpies that varied between 2.7 and 4.0 kcal/mol, and the enthalpies of reaction for copolymerization were all exothermic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call