Abstract

The gyromagnetic ratios (g-factors) belong to the most important characteristics of atoms. For the 4p4f configuration of a germanium atom experimental values of g-factors are available only for four levels, while similar experimental data on the 4p5f configuration of Ge I are absent. Therefore, a theoretical study of the fine and Zeeman structures is topical for determining the gyromagnetic ratios. All the calculations are performed in the one-configuration approximation with the energy-operator matrix containing a maximum possible number of interactions, including magnetic: spin-orbit (own and other), spin-spin, and also orbitorbit interaction. The fine structure has been examined in three (LS, LK, and jK) approximations in order to establish the nature of coupling in the systems studied and the reliability of g-factors. Apart from the g-factors, in studying the Zeeman splitting, its specific features—the crossing and anticrossing fields of magnetic components— have been determined. A comparative analysis of g-factors was performed that showed that our results are in agreement with the available, albeit few in number, experimental data. At all stages, the corresponding energy-operator matrices were numerically diagonalized, i.e., all the results presented in the paper were obtained in the intermediate coupling scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.