Abstract
We introduce a novel method based on semidefinite program (SDP) for the tight and efficient verification of neural networks. The proposed SDP relaxation advances the present state of the art in SDP-based neural network verification by adding a set of linear constraints based on eigenvectors. We extend this novel SDP relaxation by combining it with a branch-and-bound method that can provably close the relaxation gap up to zero. We show formally that the proposed approach leads to a provably tighter solution than the present state of the art. We report experimental results showing that the proposed method outperforms baselines in terms of verified accuracy while retaining an acceptable computational overhead.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.