Abstract
We show that the maximum fidelity obtained by a positive partial transpose (p.p.t.) distillation protocol is given by the solution to a certain semidefinite program. This gives a number of new lower and upper bounds on p.p.t. distillable entanglement (and thus new upper bounds on 2-locally distillable entanglement). In the presence of symmetry, the semidefinite program simplifies considerably, becoming a linear program in the case of isotropic and Werner states. Using these techniques, we determine the p.p.t. distillable entanglement of asymmetric Werner states and maximally correlated states. We conclude with a discussion of possible applications of semidefinite programming to quantum codes and 1-local distillation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.