Abstract
Using an alternative to Tarskian semantics for first-order logic known as possibility semantics, I introduce an approach to nonstandard analysis that remains within the bounds of semiconstructive mathematics, i.e., does not assume any fragment of the Axiom of Choice beyond the Axiom of Dependent Choices. I define the Fr´echet hyperreal line †R as a possibility structure and show that it shares many fundamental properties of the classical hyperreal line, such as a Transfer Principle and a Saturation Principle. I discuss the technical advantages of †R over some other alternative approaches to nonstandard analysis and argue that it is well-suited to address some of the philosophical and methodological concerns that have been raised against the application of nonstandard methods to ordinary mathematics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.