Abstract

Disaster response crawler robot OCTOPUS has four arms and four flippers for better adaptability to disaster environments. To further improve the robot mobility and terrain adaptability in unstructured terrain, we propose a new locomotion control method called compound motion pattern (CMP) for multi-limb robots like OCTOPUS. This hybrid locomotion by cooperating the arms and flippers would be effective to adapt to the unstructured terrain due to combining the advantages of crawling and walking. As a preliminary study on CMP, we proposed a fundamental and conceptual CMP while clarifying problems in constructing CMP, and developed a semi-autonomous control system for realizing the CMP. Electrically-driven OCTOPUS was used to verify the reliability and correctness of CMP. Results of experiments on climbing a step indicate that the proposed control system could obtain relatively accurate terrain information and the CMP enabled the robot to climb the step. We thus confirmed that the proposed CMP would be effective to increase terrain adaptability of robot in unstructured environment, and it would be a useful locomotion method for advanced disaster response robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.