Abstract

The literature lacks a reliable holistic approach for the three-dimensional (3D) assessment of the temporomandibular joint (TMJ) including all three adaptive processes, which are believed to contribute to the position of the mandible: (1) adaptive condylar changes, (2) glenoid fossa changes, and (3) condylar positional changes within the fossa. Hence, the purpose of the present study was to propose and assess the reliability of a semi-automatic approach for a 3D assessment of the TMJ from cone-beam computed tomography (CBCT) following orthognathic surgery. The TMJs were 3D reconstructed from a pair of superimposed pre- and postoperative (two years) CBCT scans, and spatially divided into sub-regions. The changes in the TMJ were calculated and quantified by morphovolumetrical measurements. To evaluate the reliability, intra-class correlation coefficients (ICC) were calculated at a 95% confidence interval on the measurements of two observers. The approach was deemed reliable if the ICC was good (>0.60). Pre- and postoperative CBCT scans of ten subjects (nine female; one male; mean age 25.6 years) with class II malocclusion and maxillomandibular retrognathia, who underwent bimaxillary surgery, were assessed. The inter-observer reliability of the measurements on the sample of the twenty TMJs was good to excellent, ICC range (0.71-1.00). The range of the mean absolute difference of the repeated inter-observer condylar volumetric and distance measurements, glenoid fossa surface distance measurements, and change in minimum joint space distance measurements were (1.68% (1.58)-5.01% (3.85)), (0.09 mm (0.12)-0.25 mm (0.46)), (0.05 mm (0.05)-0.08 mm (0.06)) and (0.12 mm (0.09)-0.19 mm (0.18)), respectively. The proposed semi-automatic approach demonstrated good to excellent reliability for the holistic 3D assessment of the TMJ including all three adaptive processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call