Abstract

BackgroundThe PCR-based detection of archaea DNA in human specimens relies on efficient DNA extraction. We previously designed one such protocol involving only manual steps. In an effort to reduce the workload involved, we compared this manual protocol to semi-automated and automated protocols for archaea DNA extraction from human specimens.FindingsWe tested 110 human stool specimens using each protocol. An automated protocol using the EZ1 Advanced XL extractor with the V 1.066069118 Qiagen DNA bacteria card and the EZ1® DNA Tissue Kit (Qiagen, Courtaboeuf, France) yielded 35/110 (32%) positives for the real-time PCR detection of the Methanobrevibacter smithii 16S rRNA gene, with average Ct values of 36.1. A semi-automated protocol combining glass-powder crushing, overnight proteinase K digestion and lysis in the buffer from the EZ1 kit yielded 90/110 (82%) positive specimens (P = 0.001) with an average Ct value of 27.4 (P = 0.001). The manual protocol yielded 100/110 (91%) positive specimens (P = 0.001) with an average Ct value of 30.33 (P = 0.001). However, neither the number of positive specimens nor the Ct values were significantly different between the manual protocol and the semi-automated protocol (P > 0.1 and P > 0.1).ConclusionProteinase K digestion and glass powder crushing dramatically increase the extraction yield of archaea DNA from human stools. The semi-automated protocol described here was more rapid than the manual protocol and yielded significantly more archaeal DNA. It could be applied for extracting total stool DNA for further PCR amplification.

Highlights

  • The PCR-based detection of archaea DNA in human specimens relies on efficient DNA extraction

  • The semi-automated protocol described here was more rapid than the manual protocol and yielded significantly more archaeal DNA

  • Methanobrevibacter smithii [1], Methanosphaera stadtmanae [2] and Methanomassiliicoccus luminyensis [3,4], have been isolated from human stools, and Methanobrevibacter oralis has been isolated from the subgingival plaque [4,5]

Read more

Summary

Introduction

The PCR-based detection of archaea DNA in human specimens relies on efficient DNA extraction. Conclusion: Proteinase K digestion and glass powder crushing dramatically increase the extraction yield of archaea DNA from human stools. The semi-automated protocol described here was more rapid than the manual protocol and yielded significantly more archaeal DNA.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.