Abstract

Oral health conditions (eg, plaque, calculus, gingivitis) cause morbidity and pain in companion animals. Thus, developing technologies that can ameliorate the accumulation of oral biofilm, a critical factor in the progression of these conditions, is vital. Quantitative light-induced fluorescence (QLF) is a method to quantify oral substrate accumulation, and therefore, it can assess biofilm attenuation of different products. New software has recently been developed that automates aspects of the procedure. However, few QLF studies in companion animals have been performed. QLF was used to collect digital images of oral substrate accumulation on the teeth of dogs and cats to demonstrate the ability of QLF to discriminate between foods known to differentially inhibit oral substrate accumulation. Images were taken as a function of time and diet. Software developed by the Cytometry Laboratory, Purdue University quantified biofilm coverage. Intra- and intergrader reproducibility was also assessed, as was a comparison of the results of the QLF software with those of an experienced grader using undisclosed coverage-only metrics similar to those used for the Logan and Boyce index. Quantification of oral substrate accumulation using QLF-derived images demonstrated the ability to distinguish between dental diets known to differentially inhibit oral biofilm accumulation. Little variance in intra- and intergrader reproducibility was observed, and the comparison between the experienced Logan and Boyce grader and the QLF software yielded a concordance correlation coefficient of 0.89 (95% CI = 0.84, 0.92). These results show that QLF is a useful tool that allows the semi-automated quantification of the accumulation of oral biofilm in companion animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.