Abstract

In this paper, an extended Chebyshev function is proposed to adapt the matching condition of the power amplifier (PA) by introducing a new factor. A set of impedance functions can be directly calculated along with the variation of a new variable, and the first element extracted from the functions is distributed in a wide range. In addition, the impedance function whose first element is the closest to the output capacitance of the transistor can be easily read out and selected as the original matching network. The fundamental impedance of the selected function will be reached a good matching state, and the impedances out of band will be on the edge of Smith chart. To achieve better performances, the real frequency technique is applied to adjust the harmonic impedances preventing it from falling into the low-efficiency region. Two PAs with a relative bandwidth of 34% and 75% are implemented to validate the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call