Abstract

Summary Rate-transient analysis (RTA) is a useful reservoir/hydraulic fracture characterization method that can be applied to multifractured horizontal wells (MFHWs) producing from low-permeability (tight) and shale reservoirs. In this paper, we applied a recently developed three-phase RTA technique to the analysis of production data from an MFHW completed in a low-permeability volatile oil reservoir in the Western Canadian Sedimentary Basin. This RTA technique is used to analyze the transient linear flow regime for wells operated under constant flowing bottomhole pressure (BHP) conditions. With this method, the slope of the square-root-of-time plot applied to any of the producing phases can be used to directly calculate the linear flow parameter xfk without defining pseudovariables. The method requires a set of input pressure/volume/temperature (PVT) data and an estimate of two-phase relative permeability curves. For the field case studied herein, the PVT model is constructed by tuning an equation of state (EOS) from a set of PVT experiments, while the relative permeability curves are estimated from numerical model history-matchingresults. The subject well, an MFHW completed in 15 stages, produces oil, water, and gas at a nearly constant (measured downhole) flowing BHP. This well is completed in a low-permeability,near-critical volatile oil system. For this field case, application of the recently proposed RTA method leads to an estimate of xfk that is in close agreement (within 7%) with the results of a numerical model history match performed in parallel. The RTA method also provides pressure–saturation (P–S) relationships for all three phases that are within 2% of those derived from the numerical model. The derived P–S relationships are central to the use of other RTA methods that require calculation of multiphase pseudovariables. The three-phase RTA technique developed herein is a simple-yet-rigorous and accurate alternative to numerical model history matching for estimating xfk when fluid properties and relative permeability data are available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call