Abstract

Semi-supervised learning (SSL) is the problem of learning a function with only a partially labeled training set. It has considerable practical interest in applications where labeled data is costly to obtain, while unlabeled data is abundant. One approach to SSL in the case of binary classification is inspired by work on transductive learning (TL) by Vapnik. It has been applied prevalently using support vector machines (SVM) as the base learning algorithm, giving rise to the so-called transductive SVM (TR-SVM). The resulting optimization problem, however, is highly non-convex and complex to solve. In this paper, we propose an alternative semi-supervised training algorithm based on the TL theory, namely semi-supervised random vector functional-link (RVFL) network, which is able to obtain state-of-the-art performance, while resulting in a standard convex optimization problem. In particular we show that, thanks to the characteristics of RVFLs networks, the resulting optimization problem can be safely approximated with a standard quadratic programming problem solvable in polynomial time. A wide range of experiments validate our proposal. As a comparison, we also propose a semi-supervised algorithm for RVFLs based on the theory of manifold regularization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.