Abstract
An iron ore sintering is a large energy-consuming process. The energy mainly comes from the combustion of carbon. Improving the carbon efficiency is beneficial to cost saving and environmental protection. The carbon efficiency has to be predicted before it can be improved. A semi-supervised linear–nonlinear least-square learning network (LLLN) was devised based on the process characteristics for the prediction of the carbon efficiency. First, a new comprehensive carbon ratio (CCR) that takes into account the coke residual was proposed for estimating the carbon efficiency. Then, the process characteristics that are concerned in building the model were presented. They are the existence of linear–nonlinear component and limited labeled samples. After that, a semi-supervised LLLN (SS-LLLN) approach that takes into account the process characteristics was presented for the prediction of the CCR. Last, actual run data was collected to verify the effectiveness of the proposed method. The error distribution, accuracy, and overfitness of an extreme learning machine (ELM), a semi-supervised ELM, an LLLN and an SS-LLLN were compared, which shows the effectiveness of the SS-LLLN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.