Abstract
This paper introduces a Semi-Supervised Feature Selection (SSFS) approach for selecting the most suitable features for fault diagnostics in evolving environments. The effectiveness of the proposed SSFS approach is verified with respect to an application concerning the classification of the defect type of bearings in Fully Electric Vehicles operating at different loads. The results show that SSFS allows adapting the diagnostic model to the varying load by updating the set of features used for the classification and achieves more satisfactory diagnostic accuracy than the traditional diagnostic models. The proposed diagnostic approach can contribute significantly to the maintenance practice of components such as gearboxes, alternators, shafts and pumps, whose working conditions are usually characterized by evolving environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.