Abstract
Shortness of breath is often considered a repercussion of aging in older adults, as respiratory illnesses like COPD11C2SHIP/CERT Website: https://www.eldertech.missouri.edu/. or respiratory illnesses due to heart-related issues are often misdiagnosed, under-diagnosed or ignored at early stages. Continuous health monitoring using ambient sensors has the potential to ameliorate this problem for older adults at aging-in-place facilities. In this paper, we leverage continuous respiratory health data collected by using ambient hydraulic bed sensors installed in the apartments of older adults in aging-in-place Americare facilities to find data-adaptive indicators related to shortness of breath. We used unlabeled data collected unobtrusively over the span of three years from a COPD-diagnosed individual and used data mining to label the data. These labeled data are then used to train a predictive model to make future predictions in older adults related to shortness of breath abnormality. To pick the continuous changes in respiratory health we make predictions for shorter time windows (60-s). Hence, to summarize each day’s predictions we propose an abnormal breathing index (ABI) in this paper. To showcase the trajectory of the shortness of breath abnormality over time (in terms of days), we also propose trend analysis on the ABI quarterly and incrementally. We have evaluated six individual cases retrospectively to highlight the potential and use cases of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.