Abstract

The site-specific incorporation of non-canonical amino acids (ncAAs) at amber codons requires an aminoacyl-tRNA synthetase and a cognate amber suppressor tRNA (tRNACUA ). The archaeal tyrosyl-tRNA synthetase from Methanocaldococcus jannaschii and the pyrrolysyl-tRNA synthetase (PylRS) from Methanosarcina mazei have been extensively engineered to accept a versatile set of ncAAs. The PylRS/tRNACUA pair from the bacterium Desulfitobacterium hafniense is functional in Escherichia coli, however, variants of this PylRS have not been reported yet. In this study, the authors describe a bacterial PylRS from Desulfitobacterium hafniense, which the authors engineered for the reactive ncAA para-azido-l-phenylalanine (DhAzFRS) using a semi-rational approach. DhAzFRS preferred para-azido-l-phenylalanine to the canonical l-phenylalanine as the substrate. In addition, the authors demonstrate the functionality in E. coli of a hybrid DhAzFRS carrying the first 190 N-terminal amino acids of the Methanosarcina mazei PylRS. These results suggest that bacterial and archaeal PylRSs can be "mixed and matched" to tune their substrate specificity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.