Abstract

Rolling resistance dictates a large part of the energy consumption of trucks. Therefore, it is necessary to have a sound understanding of the parameters affecting rolling resistance. This article proposes a semi-physical thermodynamic tyre rolling resistance model, which captures the essential properties of rolling resistance, such as transient changes due to temperature effects and the strain-amplitude dependency of the viscous properties. In addition, the model includes cooling effects from the surroundings. Both tyre temperature and rolling resistance are obtained simultaneously in the simulation model for each time step. The nonlinear viscoelasticity in rubber is modelled using the Bergström–Boyce model, where the viscous creep function is scaled with temperature changes. The cooling of the tyre is considered with both convective and radiative cooling. Moreover, the article explains different material parameters and their physical meaning. Additionally, examples of how the model could be used in parameter studies are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.