Abstract
The assumption of proportional hazards (PH) fundamental to the Cox PH model sometimes may not hold in practice. In this paper, we propose a generalization of the Cox PH model in terms of the cumulative hazard function taking a form similar to the Cox PH model, with the extension that the baseline cumulative hazard function is raised to a power function. Our model allows for interaction between covariates and the baseline hazard and it also includes, for the two sample problem, the case of two Weibull distributions and two extreme value distributions differing in both scale and shape parameters. The partial likelihood approach can not be applied here to estimate the model parameters. We use the full likelihood approach via a cubic B -spline approximation for the baseline hazard to estimate the model parameters. A semi-automatic procedure for knot selection based on Akaike’s information criterion is developed. We illustrate the applicability of our approach using real-life data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.