Abstract

The nature of self-trapping transition in the one-dimensional extended Holstein-Hubbard model is investigated for both adiabatic and anti-adiabatic regimes. The coherence and correlations of the phonons are incorporated accurately by applying a sequence of unitary transformations and a fully-generalized many-phonon wave function is chosen as the averaging phonon state to obtain an effective electronic problem. The renormalized electronic problem is subsequently treated exactly using the method of Bethe ansatz and the self-trapping transition is shown to be continuous over the entire range of the material parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.