Abstract
Swell behavior of expansive clays is an inherent property that can be better explained through its hydro mechanical volume change behavior arising from soil attributes like matric suction and clay mineralogy information. Previous swell related modeling studies have not incorporated these attributes for swell behavior, thereby leading to poor to erroneous characterization practices. Both chemical and hydrological attributes of the soils are targeted in this expansive soil modeling. Eight natural expansive soils were collected and their swell strains were measured under different confining pressure conditions. Soil suction properties of expansive soils as well as soil water characteristic curves (SWCC's) were determined using standard measurement procedures including pressure plate and filter paper techniques. Slope of the paths traversed by the soil specimens in a void ratio — soil matric suction framework are determined and used as mechanical input parameters for the heave modeling. A new parameter, Mechanical Hydro Chemical Parameter (MHCP) is used that accounts for both matric suction and clay mineralogy information. This parameter is correlated with swell property measurements and the correlations developed provided reliable and reasonable swell property predictions. Independent validations with other soils are still needed for further enhancement of the MHCP framework for more reliable predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.