Abstract
It has been reported that early combustion in a spark-ignition engine determines the subsequent combustion. Also, the early combustion has a very strong correlation with cycle-to-cycle variability, which limits engine operating range. As such, accurate modeling of the early flame development is very important in accurate simulation of spark-ignition engine combustion. During the early flame development, the flame kernel, initiated by spark, grows initially at laminar flame speed. As the kernel grows, the flame surface wrinkles due to surface instability and interacts with the flow turbulence as the flame transitions from laminar to turbulent flame. In this study, a semi-empirical model is proposed to simulate the laminar-to-turbulent flame transition process during early spark-ignition combustion. A hyperbolic tangent function was used to emulate the laminar-to-turbulent flame speed transition process. The proposed transition function was evaluated during early flame kernel development for both Reynolds-averaged Navier–Stokes and large eddy simulation models against combustion analysis data from high-speed optical particle image velocimetry. Difference in Reynolds-averaged Navier–Stokes and large eddy simulation transition function was analyzed and discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.