Abstract

The local structure around the transition metal (TM) ions (Cr3+ and Mn2+) centers in K2MgF4, namely tetragonal (TE) center I, monoclinic (MO) center II and orthorhombic (OR) centers III, have been explored by semi-empirical calculations in the frame of superposition model (SPM). We proposed the most appropriate structural model for each center by matching the theoretically predicted zero-field splitting parameters (ZFSPs) with the experimental ones obtained by EPR spectroscopy. It is shown that the tetragonality of MgF6 octahedra increases with the substitution of both Cr3+ and Mn2+ for Mg2+ sites as well as with a rather higher value for the latter one. A tilt angle of 12.51° is found for MO Cr3+ center, which is comparatively small, as compared to the other A2BF4 crystals such as K2ZnF4 and Tl2ZnF4. Almost three times larger relaxation of intervening F-ligand than that of other equatorial F-ligands is also indicated for OR Cr3+ center.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.