Abstract

This paper describes a sensitive and selective semi-continuous analyzer (FORMAL-FLU) for the fluorimetric determination of atmospheric formaldehyde. The method is based on the reaction between formaldehyde and Fluoral-P, producing the fluorescent derivative 3,5-diacetyl-1,4-dihydrolutidine (DDL) which, when excited at 410 nm, fluoresces at 510 nm. This analyzer consists of a gas diffusion chamber with a central microporous Teflon tube, with high gas permeability, filled with Fluoral-P solution. The air sample is pumped continually along the external tube and formaldehyde permeates the internal tube membrane, where it reacts selectively with Fluoral-P to form DDL. The analytical parameters of air sampling flow rate, sampling time interval and Fluoral-P reagent flow rate were optimized by the response surface method, using the Box-Behnken design. Under optimal conditions, air samples were pumped through the annular space of a gas diffusion chamber equipped with a central tube of microporous Teflon (17 cm long, 1.4 mm i.d., 2.15 mm e.d., 70% of porosity and 2 µm average pore diameter) filled with Fluoral-P at 2.5 mL min-1 for 30 min. After sampling, the mixture was directed at 1.3 mL min-1 to a 2.0 m long reaction coil immerged in a thermostatic bath at 80 ºC to improve the sample/reagent mixture and reaction rate, then to the fluorimetric detector (λex = 410 nm λem = 510 nm), where the signal was acquired and recorded by an integrator. Peak heights were measured and these values were used in the calibration and determination steps. Under these conditions, the limit of detection was 0.55 ng mL-1 and the coefficient of variation was 8.6%. The main advantage of the FORMAL-FLU system is its selectivity for formaldehyde, without significant interference from bisulfite and other aldehydes, especially acetaldehyde, low blank level, resulting in low detection limits and, above all, using a single sampling and measuring device equipment which allows for in situ measurements.

Highlights

  • Formaldehyde (HCHO) is the most abundant aldehyde in ambient air and is ubiquitous in urban atmospheres, where it is introduced through a variety of emission pathways

  • This paper describes a sensitive and selective semicontinuous analyzer (FORMAL-FLU) for the fluorimetric determination of formaldehyde in air

  • In the optimization of the formaldehyde collector, various parameters such as temperature and coil length were tested in order to identify the best analytical signal

Read more

Summary

Introduction

Formaldehyde (HCHO) is the most abundant aldehyde in ambient air and is ubiquitous in urban atmospheres, where it is introduced through a variety of emission pathways. This aldehyde is of great significance in atmospheric chemistry due to its strong influence on atmospheric photochemical reactions that lead to the formation of important smog components.[1,2,3]. Formaldehyde, which is present in ambient air at high concentrations, undergoes chemical reactions and physical transformations during its trajectory through the atmosphere.[2,3,4,5] Atmospheric formaldehyde levels may reach concentrations ranges of 0.1-1.8 ppbV in remote areas, 1.2-113 ppbV in urban areas and 2.3-188 ppbV in indoor environments.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call