Abstract
Harnessing the biomass energy potential through biofuel production offers new outlets for a circular economy. In this study an integrated system which combine brewery wastewater treatment using algal-bacterial aggregates instead of activated sludge was developed. The use of algal-bacterial aggregates can eliminate the aeration requirements and significantly reduce the high biomass harvesting costs associated with algal monocultures. A sequencing batch reactor (SBR) setup operating with and without biomass recirculation was used to investigate pollutant removal rates, aggregation capacity and microbial community characteristics under a range of hydraulic retention times (HRTs) and solid retention times (SRTs). It was observed that biomass recirculation strategy significantly enhanced aggregation and pollutant removal (i.e., 78.7%, 94.2% and 75.2% for d-COD, TKN, and PO43--P, respectively). The microbial community established was highly diverse consisting of 161 Bacterial Operational Taxonomic Units (B-OTUs) and 16 unicellular Eukaryotic OTUs (E-OTUs). Escalation the optimal conditions (i.e., HRT = 4 d, SRT = 10 d) at pilot-scale resulted in nutrient starvation leading to 38–44% w/w carbohydrate accumulation. The harvested biomass was converted to bioethanol after acid hydrolysis followed by fermentation with Saccharomyces cerevisiae achieving a bioethanol production yield of 0.076 g bioethanol/g biomass. These data suggest that bioethanol production coupled with high-performance wastewater treatment using algal-bacterial aggregates is feasible, albeit less productive concerning bioethanol yields than systems exclusively designed for third and fourth-generation biofuel production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.