Abstract

CVD (cardiovascular disease) is one of the biggest threats to human beings nowadays. An early and quantitative diagnosis of CVD is important in extending lifespan and improving people's life quality. Coronary artery stenosis can prevent CVD. To diagnose the degree of stenosis, the inner diameter of coronary artery needs to be measured. To achieve such measurement, the coronary artery is segmented by using a method that is based on morphology and the continuity between computed tomography image slices. A centerline extraction method based on mechanical simulation is proposed. This centerline extraction method can figure out a basic framework of the coronary artery by simulating pixel dots of the artery image into mass points. Such mass points have tensile forces, with which the outer pixel dots can be drawn to the center. Subsequently, the centerline of the coronary artery can be outlined by using the local line-fitting method. Finally, the nearest point method is adopted to measure the inner diameter. Experimental results showed that the methods proposed in this paper can precisely extract the centerline of the coronary artery and can accurately measure its inner diameter, thereby providing a basis for quantitative diagnosis of coronary artery stenosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.