Abstract
A semi-analytical time integration method is proposed for the numerical simulation of transient groundwater flow in unconfined aquifers by the nonlinear Boussinesq equation. The method is based on the analytical solution of the system of ordinary differential equations with constant coefficients. While it is unconditionally stable and more accurate than the finite difference methods, the computational cost is much more expensive than (can be more than 10 times) that of the finite difference methods for a single time step. However, by partitioning the nonlinear parameters into linear and nonlinear parts, the costly computation can be performed only once. With larger and less variable time step sizes, the total computational cost can be significantly reduced. Three examples are included to illustrate the advantages and limitations of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.