Abstract

A semi analytical nonlocal elasticity model to analyze the effect of non-uniform edge loads on static stability and free vibration characteristics of agglomerated carbon nanotubes (CNTs) reinforced nano cylindrical panels are presented. Effective material properties of the agglomerated CNT reinforced composite are obtained using a two-parameter micro-mechanics model while Eringen’s non-local theory is used to account the size effect. Sinusoidal shear deformation theory is adopted to analyze the buckling and vibration parameters using Galerkin’s approach. The accuracy of the proposed model is presented first by comparing the results in the literature. Then a comprehensive study is carried out to analyze the influence of various degrees of agglomeration (complete, partial), nature of edge load, and non-local effects on the buckling and free vibration response of CNT reinforced nano cylindrical panel. The results revealed that non-local size effect leads to a reduction in stiffness and thus reduces buckling and dynamic characteristics. Moreover, it is observed that critical buckling load varies with type of in plane load and reduction in natural frequency is different for different in plane loading conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call