Abstract
AbstractRadiative feedbacks govern the Earth's climate sensitivity and elucidate the geographic patterns of climate change in response to a carbon‐dioxide forcing. We develop an analytical model for patterned radiative feedbacks that depends only on changes in local surface temperature. The analytical model combines well‐known moist adiabatic theory with the radiative‐advective equilibrium that describes the energy balance in high latitudes. Together with a classic analytical function for surface albedo, all of the non‐cloud feedbacks are represented. The kernel‐based analytical feedbacks reproduce the feedbacks diagnosed from global climate models at the global, zonal‐mean, and seasonal scales, including in the polar regions, though with less intermodel spread. The analytical model thus provides a framework for a quantitative understanding of radiative feedbacks from simple physics, independent of the detailed atmospheric and cryospheric responses simulated by comprehensive climate models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.