Abstract

A semi-analytical model is constructed for single- and multi-junction solar cells. This model incorporates the key performance aspects of practical devices, including nonradiative recombination, photon recycling within a given junction, spontaneous emission coupling between junctions, and non-step-like absorptance and emittance with below-bandgap tail absorption. Four typical planar structures with the combinations of a smooth/textured top surface and an absorbing/reflecting substrate (or backside surface) are investigated, through which the extracted power and four types of fundamental loss mechanisms, transmission, thermalization, spatial-relaxation, and recombination loss are analyzed for both single- and multi-junction solar cells. The below-bandgap tail absorption increases the short-circuit current but decreases the output and open-circuit voltage. Using a straightforward formulism this model provides the initial design parameters and the achievable efficiencies for both single- and multiple-junction solar cells over a wide range of material quality. The achievable efficiency limits calculated using the best reported materials and AM1.5 G one sun for GaAs and Si single-junction solar cells are, respectively, 27.4 and 21.1% for semiconductor slabs with a flat surface and a non-reflecting index-matched absorbing substrate, and 30.8 and 26.4% for semiconductor slabs with a textured surface and an ideal 100% reflecting backside surface. Two important design rules for both single- and multi-junction solar cells are established: i) the optimal junction thickness decreases and the optimal bandgap energy increases when nonradiative recombination increases; and ii) the optimal junction thickness increases and the optimal bandgap energy decreases for higher solar concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.