Abstract

The productivity prediction of deep coalbed methane (CBM) wells is significantly influenced by gas-water two-phase flow characteristics and seepage parameters of the fracture network. While numerical simulations offer a comprehensive approach, analytical models are favored for their faster and broader applicability. However, conventional analytical models often oversimplify the complex problem of two-phase seepage equations, leading to substantial errors in dynamic analysis outcomes. Addressing this shortcoming, we establish a gas-water two-phase productivity prediction model for deep CBM reservoirs. This model takes into account the two-phase flow characteristics within the reservoir and fracture network, as well as the stress sensitivity of the reservoir and fractures. Additionally, a modified trilinear flow model characterizes the fractured modification body. By integrating the flowing material balance equation with the Newton Iteration method, we gradually update the seepage model’s nonlinear parameters using the average formation pressure. We also linearize the gas-water two-phase model through successive iterations to derive a semi-analytical solution. The accuracy of the model was verified through comparison with commercial numerical simulation software results and field application. The model also enabled us to scrutinize the influence of reservoir and fracture network parameters on productivity. Our research findings suggest that the semi-analytical solution approach can efficiently address the nonlinear seepage problem of gas-water two-phase flow, enabling quick and accurate prediction of deep CBM well productivity. Moreover, appropriate fracture network parameters are paramount for enhancing the productivity of deep CBM wells. Lastly, during the development of deep CBM reservoirs, it is crucial to control the production pressure difference appropriately to minimize the stress sensitivity impact on production capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call