Abstract

An algorithm for solution of a model for heating and evaporation of a fuel droplet has been developed. The objective of the work is to develop a computationally economic solution module for simulating droplet evaporation that can be incorporated in spray combustion CFD model that handles a large number of droplets. The liquid-phase transient diffusive equation has been solved semi-analytically, which involves a spatially closed-form and temporally discretized solution procedure. The model takes into account droplet surface regression, nonunity gas-phase Lewis number and variation of latent heat with temperature. The accuracy of the model is identical to a Finite Volume solution obtained on a very fine nonuniform grid, but the computational cost is significantly less, making this approach suitable for use in a spray combustion code. The evaporation of isolated heptane droplet in a quiescent ambient has been investigated for ambient pressures of 1 to 5 bar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call