Abstract
A semi-analytical method for the S-parameter calculations of an N×M multimode interference coupler (MMI coupler) is presented. The proposed semi-analytical method is based on the mode decomposition and utilizes an effective index method to approximate the channel waveguide using an equivalent slab waveguide whose modes are described by exact analytic expressions. In comparison to the commonly used beam propagation method (BPM) and finite difference time domain method, which require significant time and computational resources, the proposed method accelerates the design process of photonic integrated circuits and basic building blocks such as an MMI coupler. The simulation results obtained using the developed method and the BPM were compared and showed very similar outcomes for different topologies of the MMI coupler. The key advantage of the proposed semi-analytical method over other analytical models is its ability to accurately simulate MMI couplers with an arbitrary position and number of input and output waveguides. In addition, this method can be extended using the theory of local coupled modes by taking into account the reflections from the end face of the MMI box.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.