Abstract

Multi-cavity mold design is an efficient approach to achieving mass production and is frequently used in plastic injection applications. The runner system of a multi-cavity mold delivers molten plastic to each cavity evenly and makes the molded product from each individual cavity possess an equivalent quality. Not only the dimensions, but also the invisible quality, e.g., the internal stress of the product is of great concern in regard to molding quality. Using commercial software to find an optimal solution for the runner system may be time-consuming in respect to iterations if the engineers lack empirical rules. The H-type runner system is often used due to an inherently balanced filling in multi-cavities. However, the shear heat inducing an imbalanced flow behavior requires the H-type runner system to be improved as the number of the cavities is increased. This work develops a methodology based on the rheological concept to determine the runner system of a multi-cavity mold semi-analytically. As the relation of the viscosity with respect to shear rate is known, the runner system can be constructed step-by-step via this method. The use of the proposed method helps to focus attention on the connection between the physical situation and its related mathematical model. The influences of the melt temperature and resin type can be easily investigated. Three design examples, a 16-cavity mold with a fishbone runner system, an 8-cavity mold with an arbitrary runner layout, and the influences of melt temperature and resin type on the runner design are demonstrated and validated by the commercial software. The proposed method shows its great benefit when a new runner design project is launched in the initial design stage and then cooperates with the commercial software for further modifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call