Abstract
A semi-analytical plane elasticity solution of the circular hole with diametrically opposite notches in a homogeneous and isotropic geomaterial is presented. This solution is based on: (i) the evaluation of the conformal mapping function of a hole of prescribed shape by an appropriate numerical scheme and (ii) the closed-form solutions of the Kolosov–Muskhelishvili complex potentials. For the particular case of circular notches––which resemble to the circular cavity breakout in rocks––it is demonstrated that numerical results pertaining to boundary stresses and displacements predicted by the finite differences model FLAC2D, as well as previous analytical results referring to the stress-concentration-factor, are in agreement with analytical results. It is also illustrated that the solution may be easily applied to non-rounded diametrically opposite notch geometries, such as “dog-eared” breakouts by properly selecting the respective conformal mapping function via the methodology presented herein. By employing a stress-mean-value brittle failure criterion that takes into account the stress-gradient effect in the vicinity of the curved surfaces in rock as well as the present semi-analytical solution, it is found that a notched hole, e.g. borehole or tunnel breakout, may exhibit stable propagation. The practical significance of the proposed solution lies in the fact that it can be used as a quick-solver for back-analysis of borehole breakout images obtained in situ via a televiewer for the estimation of the orientation and magnitude of in situ stresses and of strain–stress measurements in laboratory tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.