Abstract

We prove that the category of cocommutative Hopf algebras over a field is a semi-abelian category. This result extends a previous special case of it, based on the Milnor–Moore theorem, where the field was assumed to have zero characteristic. Takeuchi's theorem asserting that the category of commutative and cocommutative Hopf algebras over a field is abelian immediately follows from this new observation. We also prove that the category of cocommutative Hopf algebras over a field is action representable. We make some new observations concerning the categorical commutator of normal Hopf subalgebras, and this leads to the proof that two definitions of crossed modules of cocommutative Hopf algebras are equivalent in this context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.